Энергосбережение в энергетике и теплотехнология

Физика примеры решения задач
Теоретическая механика
Математический анализ
Операции над множествами
Логические символы
Числовые множества
Теорема Кантора
Предел последовательности
Свойство пределов
Основные свойства интеграла
Табличные интегралы
Интегрирование по частям
Интегрирование рациональных
функций
Дробно-рациональные функции
Непрерывные функции
Предел функции по Коши
Односторонние пределы
Понятие комплексного числа
Точки разрыва функции
Геометрический смысл
производной
Физический смысл производной
Гиперболические функции
Дифференциалы высших
порядков
Теорема Ферма
Теорема Ролля
Теорема Коши
О правилах Лопиталя
Исследование поведения
функции
Выпуклость и точки перегиба
Асимптоты
Построение графиков функций
Интегрирование
Аппаратные средства
персонального компьютера
Технические характеристики ПК
Компьютерные сети
уровень передачи данных
Техника живописи
Об искусстве и художниках
Трещины в слоях масляной живописи
Различные методы в масляной живописи
Лессировки
Смолы средней твердости
Лаки для живописи
Матовые масляные краски
Материалы для грунта и их грунтовка
Клеевой грунт
Палитры
Поступательный ход развития
техники живописи
Подготовка стен для живописи
Масла
Краски древности
Метод живописи, которым пользовались
живописцы Фландрии
Оптическое смешение красок
Техника живописи Леонардо да Винчи
Техника живописи Рибейры,
Веласкеза, Муриль

Строительные материалы

 

Развитие человеческого общества всегда было связано с расширением использования энергетических ресурсов. За предыдущее столетие мировое энергопотребление увеличилось более чем в 5 раз и достигло 12 млрд. тонн условного топлива в год. Прирост мирового энергопотребления за десятилетний период с 1963 по 1972 гг. составил 2,6 млрд. т у. т., а за последующий десятилетний период – всего 1,7 млрд. т у. т., или в полтора раза меньше. Особенно резко снизились темпы прироста энергопотребления в промышленно развитых странах. Средний ежегодный прирост потребления в мире составил 1,7 % в год, а в США – 0,4 %, в странах Западной Европы – 0,25 %.

Экспертная оценка мирового потребления коммерческих энергоресурсов за период 1860-1990 гг. представлена в табл. 2.

Основным источником энергии для человечества является органическое топливо, и в ближайшем будущем эта ситуация вряд ли изменится.

В рассматриваемой перспективе реальные источники нефти и газа перемещаются в труднодоступные районы, в зоны северных морей.

Замещение природного газа на электростанциях твердым топливом может быть экономически оправдано при правильном соотношении их цен.

Задача энергоаудита:выявить источники нерациональных затрат энергии и неоправданных потерь энергии;

Ознакомление с основными потребителями, производственными процессами и линиями, общим построением системы энергоснабжения.

Оценка экономии энергии и экономических преимуществ от внедрения различных предлагаемых мероприятий.

Наивысшей импульсной яркостью по сравнению с другими источниками излучения являются рентгеновские лазеры.

Вторичные энергоресурсы Вторичные энергоресурсы (ВЭР) подразделяются на следующие группы.1. Горючие ВЭР, получаемые в результате технологических процессов с участием тепловых и сырьевых (горючих) ресурсов.

Газообразные горючие ВЭР Рассмотрим основные принципы использования газообразных горючих отбросных газов на примере сажевого производства.

Низкокалорийные газы сажевых производств сжигают в пакетно-конвективных котлах (ПКК), выпускаемых Белгородским заводом энергетического машиностроения (Б3ЭМ). Котлы имеют предтопок, в котором сажевый газ сжигается совместно с природным газом (либо мазутом).

Область применения котлов ПКК расширяется, их используют в нефтехимической промышленности за печами выжига катализатора, в сланцеперерабатывающей промышленности для сжигания забалластированных газов.

Рис. 6. Установка для сжигания сильно забалластированных газов, образующихся при выжигании сажи на катализаторах:1 – камера сгорания; 2 – труба, 3 – канал;

Целью расчета является определение необходимого расхода природного газа для обеспечения требуемой температуры в топке и объема циклонной топки.

Схема огневого обезвреживания шламов на Синарском трубном заводе:

Утилизация высокотемпературных тепловых отходов Газотрубные котлы-утилизаторы.

На рис. 10 показан котел Г-250 с пароперегревателем, с площадью испарительной поверхности нагрева котла 250 м2.

На рис. 11 показан Г-330БИ. В этом котле основные испарительные поверхности выполнены из труб диаметром 50×3 мм и расположены в нижнем барабане.

К горизонтальным газотрубным двухбарабанным котлам относится и котел Г-420БПЭ, предназначенный для выработки перегретого пара за счет использования теплоты нитрозных газов в схеме получения слабой азотной кислоты (рис. 12).

Котлы-утилизаторы типов В-90Б, В-460Б, Н-89, Н-180, Н-433 предназначены для использования теплоты конвертированных газов и выработки насыщенного пара для технологических и бытовых нужд завода (см. табл. 5).

Водотрубные котлы-утилизаторы Наиболее распространенными водотрубными котлами являются котлы марки КУ, выпускаемые Белгородским заводом.

В пакетно-конвективных котлах (ПКК) используют физическую и химическую теплоту отбросных газов сажевого производства.

Котлы-утилизаторы за обжиговыми печами серного колчедана При обжиге колчеданов получают два продукта: металл и диоксид серы.

Кроме рассмотренных паровых котлов в сернокислотном производстве, используют также выпускавшиеся ранее газотрубные котлы на отходящих газах с естественной циркуляцией ГТКУ (газотрубный КУ) типов: ГТКУ-6/40б.п., ГТКУ-10/40 (рис. 17) и ГТКУ-25/40.

Котлы типа КС-200 ВТКУ (рис. 18) и КС-450 ВТКУ устанавливают за печами обжига серного колчедана в кипящем слое производительностью по колчедану соответственно 200 и 450 т/сут.

При комбинированном получении технологической и энергетической продукции – обжигового газа и пара энергетических параметров - предпочтение отдается надежной работе основного технологического звена.

Для улучшения показателей установки и получения пара повышенных параметров разработан ЭТА печь – паровой котел ПКС-10/40 (рис. 19), предназначенный для сжигания сероводорода и охлаждения продуктов сгорания.

Серный энерготехнологический агрегат САТА-Ц-100-1 (рис. 20) применяется в технологическом процессе получения серной кислоты из элементарной серы или сероводорода.

Установки сухого тушения кокса (УСТК) В тепловом балансе коксовой батареи количество теплоты, уносимой раскаленным коксом, достигает 45-50 % от количества теплоты, поступающей на обогрев печи.

Сухое тушение кокса при всех его неоспоримых достоинствах имеет существенный недостаток, выражающийся в том, что при использовании этого метода охлаждения выход кокса снижается.

Теплопотери поверхностью камеры тушения:  (19).

Котлы-утилизаторы в установках сухого тушения кокса Для первых УСТК был разработан башенный котел КСТ-80 (см. рис. 21).

Для регулирования температуры пара в котле предусмотрен пароохладитель, работающий на котловой воде и установленный «в рассечку» между ступенями.

Котлы-утилизаторы сталеплавильных конвертеров При кислородно-конвертерном процессе продувка чугуна проводится через водоохлаждаемую фурму техническим кислородом (98-99,5 %).

Подъемный и горизонтальный газоходы полностью экранированы трубами диаметром 38 мм с шагом 42 мм.

Экраны, образующие поверхности нагрева, выполнены цельносварными, мембранными.

Энерготехнологические установки Энерготехнологическое комбинирование в прокатном производстве.

Энерготехнологическое комбинирование в целлюлозно-бумажной промышленности При производстве целлюлозы широко применяют ЭТА, в которых осуществляется технологический процесс, сжигание так называемого черного щелока с восстановлением сульфата натрия.

Основной процесс сушки и сгорания органических веществ происходит в объеме топки, расположенном между подушкой огарка и щелоковыми форсунками.

Паропроизводительность котла обеспечивает расход пара на варочный котел (D1), на выпарную установку (D2) и на подогреватель (D3).

Расчет тепловой схемы Расчет каупера.

Баланс ГТУ Компрессор сжимает атмосферный воздух, повышая его давление от Р0 до Рк. Р0 = 0,1 МПа; Рк = 0,5 МПа, т.е. степень сжатия компрессора равна π = 5.

Энерготехнологическое комбинирование при получении водорода Основным технологическим звеном энерготехнологической установки получения водорода является печь-реактор [8], где происходит паровая конверсия метана . (51).

Тепловой баланс топки , (52).

Охлаждение конструктивных элементов высокотемпературных установок В высокотемпературных установках многие конструктивные элементы находятся в зонах высоких температур, и надежная их работа обеспечивается системами принудительного охлаждения.

Испарительное охлаждение Сущность испарительного охлаждения (рис. 34) заключается в охлаждении конструктивных элементов печей химически очищенной водой, причем отводимая от конструктивных элементов теплота затрачивается на испарение воды.

Использование отработавшего пара В большинстве случаев отработавший пар имеет низкое давление, загрязнен химическими и механическими примесями, а при переменных нагрузках производственных агрегатов образуются прерывистые потоки пара.

Выработка электроэнергии. Отработавший пар для выработки электроэнергии может использоватьсяв турбинах мятого пара, в турбинах двойного давления, а также в теплофикационных турбинах с промежуточным подводом пара.

Аккумуляторы Рато предназначены для выравнивания колебаний при поступлении отработавшего пара от машин периодического действия и машин, работающих с переменной нагрузкой, при использовании его в установках с постоянной нагрузкой.

Аккумуляторы Рутса предназначаются для выравнивания давления у производителей и потребителей теплоты.

Наполнение аккумулятора водой больше чем на 90-95 % не рекомендуется во избежание бросков воды в паропровод.

Утилизация низкопотенциальных тепловых отходов Сбросное низкопотенциальное тепло (50-120 °С) чрезвычайно сложно использовать, так как трудно найти потребителей в достаточном количестве.

Тепловой баланс аппарата мгновенного вскипания имеет вид , (71).

Утилизация теплоты агрессивных жидкостей В производстве серной кислоты большая часть ВЭР (95 %) заключается в физической теплоте кислоты, которая в процессе ее получения охлаждается от 80-140 °С до 40-60 °С.

Утилизация теплоты вентиляционных выбросов Проблема утилизации теплоты вентиляционных выбросов - это во многом проблема трассировки воздуховодов, если иметь в виду существующие схемы приточной и вытяжной вентиляции.

Наружный воздух, забираемый приточным вентилятором, проходит через фильтр наружного воздуха и подается на нагревательный теплообменник (рис. 46).

Для утилизации теплоты вентиляционного воздуха в жилых помещениях фирмой «Wiessmann» разработан агрегат Vitovent - 300 (рис. 47).

Глубокое охлаждение продуктов сгорания Влажный воздух, влажные продукты сгорания.

Для продуктов сгорания среднего состава, сжигаемых с коэффициентом избытка воздуха a = 1,3 ( = 0,11;  = 0,13;  = 0,76), плотность и теплоемкость при 0 °С составляют соответственно ρ = 1,33 кг/м3, с = 1,068 кДж/(кг∙К); для воздуха соответствующие значения равны ρ = 1,29 кг/м3,  = 1,009 кДж/(кг∙К).

Утилизация теплоты низкотемпературных дымовых газов Проблему эффективного использования теплоты отходящих газов энергетических котлов и промышленных печей можно решить путем установки за ними контактных теплообменников с активной насадкой – КТАНов [10].

Достоинства контактного теплообменника:1. Используется скрытая теплота конденсации водяных паров, при этом КПД возрастет до 95-96 %.

  Выделяют следующие режимы работы насадки в зависимости от плотности орошения и скорости потока газа (рис. 51).

Расчет контактного экономайзера Задан состав газа, т. е. объемы продуктов сгорания и теплота сгорания: .

Парогазовые установки Основные типы парогазовых установок.

На рис. 53 в Т, S координатах показан идеальный цикл парогазовой установки с котлом полного горения.

Парогазовые установки с высоконапорными парогенераторами (ПГУВ) Принципиальная тепловая схема ПГУВ представлена на рис. 54.

Принципиальное отличие парогазовых установок с котлами-утилизаторами от парогазовых установок с котлами полного горения заключается в том, что котлы-утилизаторы не рассчитаны на обеспечение автономной работы паротурбинной части установки при останове газотурбинного агрегат.

Количество котлов-утилизаторов в составе ПГУКУ равно количеству газотурбинных агрегатов.

Производная от полезной работы по степени сжатия, при которой полезная работа максимальна, будет равна. (105).

Сжигание топлива в камере сгорания газовой турбины согласно условиям прочности лопаток турбин осуществляется с повышенными значениями коэффициента избытка воздуха αг.

Термическая эффективность парогазовых установок.

Соотношения между параметрами газового и парового циклов Критерием, определяющим целесообразность утилизации теплоты отходящих газов, является термический КПД .

Выразим относительный расход пара через его параметры. Для этого используем уравнение теплового баланса для пароперегревателя и испарителя котла-утилизатора , (132).

Парогазовые установки с впрыском пара В парогазовых установках с впрыском пара (ПГУ ВП) в воздушный или газовый тракт энергетической газотурбинной установки (ГТУ) подаются продукты сгорания топлива и водяной пар, которые в виде парогазовой смеси расширяются в газовой турбине.

Теплота, подведенная в камере сгорания: , (136) где cp – массовая теплоемкость водяного пара.

На рис. 65 приведена расчетная зависимость изменения КПД газовой турбины при увеличении доли впрыскиваемого пара.

Модернизация котельных в ТЭЦ При существующем соотношении цен на энергоносители и оборудовании стала чрезвычайно целесообразной выработка электроэнергии на тепловом потреблении.

Энергосбережение в газовой промышленности Опытно-промышленная газотурбинная расширительная станция (ГТРС) на Среднеуральской ГРЭС.

Технологической схемой ГТРС предусматривается подогрев газа перед турбиной, для того чтобы после понижения давления на лопаточном аппарате температура газа на выхлопе сохранялась положительной.

Оптимальное использование теплоты уходящих газов газовых турбин Термодинамическая оценка.

При расходе продуктов сгорания (воздуха через компрессор)  кг/с потеря мощности составит  кВт. Т. е. потеря работы (в процентах от полезной работы турбины), связанная с работой теплообменника на максимальном режиме (с аэродинамическим сопротивлением 467 Па), равна % .

Теплоснабжение от утилизационных установок компрессорных станций Рассмотрим два варианта теплоснабжения (рис. 71):теплоснабжение жилого массива от индивидуальной котельной, расположенной в самом жилом массиве;теплоснабжение жилого массива от утилизаторов газовой турбины со строительством магистрального трубопровода длиной L.

Утилизационная установка компрессорной станции Капиталовложение включают в себя две составляющие: капитальные затраты на установку теплообменника и на сооружение магистрального трубопровода теплоснабжения.

Энергосбережение промышленности Энергосбережение в котельных и тепловых сетях.

Количество теплоты, отданное продуктами сгорания, определятся выражением . (180).

Работа котельной установки в режиме пониженного давления.

Возврат конденсата в котельную В практике эксплуатации паровых систем теплоснабжения недостаточное внимание уделяется сбору и возврату конденсата в котельную, а это приводит к значительному перерасходу топлива.

Режимы работы котельного оборудования Большие, легкодоступные, практически не  требующие затрат резервы экономии газа и электроэнергии заключены в оптимальном распределении нагрузок между котлами, работающими на общего потребителя.

Суммарная выработка пара (тепловой энергии) в единицу времени двумя котлами составляет . Если котел №1 загружен до значения , то загрузка котла №2 составит .

Перевод паровых котлов на водогрейный режим Перевод паровых котлов на водогрейный режим имеет как недостатки, так и преимуществ.

Энергосбережение в компрессорном хозяйстве Большой расход сжатого воздуха на промышленных предприятиях связан с его рациональным использованием и различного рода утечками.

Из выражения следует, что массовый расход идеального газа при истечении зависит от площади выходного сечения, свойств и начальных параметров газа и степени его расширения . При  расход, естественно, равен нулю ().

Даже при избыточном давлении воздуха в 1 атм достигается критическая скорость истечения (рис. 79), которая в дальнейшем при увеличении давления воздуха в воздуховоде не изменяется.

Удельный тепловой поток при однокамерном остеклении можно рассчитать по выражению  Вт/(м2×К), (209)

где  - коэффициент теплоотдачи от поверхности стекла к воздушной прослойке, являющийся суммой конвективного и лучистого коэффициентов теплообмена.

Система инфракрасного обогрева производственных помещений Инфракрасные системы обогрева (ИКО) имеют ряд преимуществ по сравнению с традиционными системами .

Светлые системы ИКО. Все светлые ИК- излучатели основаны на принципе поверхностного горения (рис. 82).

Внутри воздуховодов рециркулирует горячий воздух с температурой 200-400 °С, нагревая стенки воздуховода.

 

Математический анализ Интегральное исчисление