Дифференциальное уравнение Изменить порядок интегрирования

Математика Дифференциальные уравнения вычислить интеграл решения задачи

Криволинейный интеграл второго рода

Пусть по кривой MN, расположенной в плоскости хОу, движется материальная точка Р (х, у ), к которой приложена сила F , изменяющаяся по величине и направлению при перемещении точки. Физическая задача вычисления работы силы  при перемещении точки Р из положения М в положение N приводит к понятию криволинейного интеграла второго рода. Для этого кривая MN разбивается на п произвольных частей точками М=M1,M2,M3,…Mn=N

Напрвленные отрезки обозначим вектором , величину силы F в точке Мj обозначим Ft. Тогда скалярное произведение Fi • Mt - приближённое выражение работы силы  вдоль дуги Mi-1Mi Работа на всей кривой MN

Пусть - проекции вектора на оси координат, Δхi, Δуi, - проекции вектора . Запишем скалярное произведение в формуле (33) через проекции векторов:

Предел интегральной суммы (34) при стремлении к нулю наибольшей из длин частичных дуг кривой MN (n→∞) называется криволинейным интегралом от функций Р(х,у), Q(x,y) вдоль кривой MN по координатам х, у (иначе - криволинейным интегралом второго  рода). Обозначается такой интеграл

  и численно равен работе силы   на пути MN.

Криволинейные интегралы второго рода обладают такими же свойствами 1, 2, как и интегралы первого рода. В отличие от последних они зависят от направления обхода кривой. Если изменить направление обхода, то интеграл меняет знак:

Если контур интегрирования L замкнут, то положительным направлением обхода считается движение против часовой стрелки. При этом область, заключённая внутри контура остаётся слева по ходу движения.

Чтобы вычислить криволинейный интеграл второго рода, его нужно преобразовать в определённый с помощью уравнения кривой интегрирования. При этом:

если кривая MN задана уравнением у=у(х), то

если кривая MN задана уравнением х = х (у), то

если кривая MN задана параметрическими уравнениями х = х (t), у=у(t) при перемещении из точки М в точку N параметр t меняется от α до β, то

Важно подчеркнуть, что в нижнем пределе определённых интегралов (35) и (36) стоит координата точки начала, а в верхнем пределе - координата точки конца кривой интегрирования.

Криволинейный интеграл второго рода может быть задан на пространственной кривой, и тогда он имеет вид

Его можно преобразовать в определённый интеграл, если кривая интегрирования

задана параметрическими уравнениями х = х (t), у=у(t), z=z(t).

11. Формула Грина. Условие независимости криволинейного интеграла второго рода от вида пути интегрирования

Пусть D - некоторая замкнутая область на плоскости хОу, ограниченная контуром L. На ней заданы функции Р = Р(х,у) и Q = Q(x,y), непрерывные на D вместе со своими частными производными первого порядка. Формула Грина связывает криволинейный интеграл второго рода по L с двойным интегралом по области D:

Движение по контуру L - в положительном направлении.

С помощью формулы Грина значение криволинейного интеграла по замкнутому контуру можно найти, вычислив двойной интеграл

Вычислить интеграл где L - пробегаемая в положительном направлении окружность радиуса 2 с центром в начале координат.

Задача . Вычислить .

Вычислить .

Вычислить . . . . При вычислении интегралов вида , где R – рациональная функция, используется универсальная тригонометрическая подстановка , приводящая к интегралам от рациональных относительно t функций Вычислить , если l задана уравнением

Найти работу вектор-силы  на криволинейном пути

Интегральное исчисление для функций многих переменных. Повторение основных понятий, связанных с топологией n-мерного евклидова пространства Понятие меры Жордана, множества, измеримые по Жордану. Критерий измеримости множества. Основные свойства меры Жордана. n-мерные цилиндры. Множества меры ноль. Определение кратного интеграла Римана.
Интнгралы при вычисление площади и обьема