Молекулярная физика и термодинамика

Физика примеры решения задач
Теоретическая механика
Математический анализ
Операции над множествами
Логические символы
Числовые множества
Теорема Кантора
Предел последовательности
Свойство пределов
Основные свойства интеграла
Табличные интегралы
Интегрирование по частям
Интегрирование рациональных
функций
Дробно-рациональные функции
Непрерывные функции
Предел функции по Коши
Односторонние пределы
Понятие комплексного числа
Точки разрыва функции
Геометрический смысл
производной
Физический смысл производной
Гиперболические функции
Дифференциалы высших
порядков
Теорема Ферма
Теорема Ролля
Теорема Коши
О правилах Лопиталя
Исследование поведения
функции
Выпуклость и точки перегиба
Асимптоты
Построение графиков функций
Интегрирование
Аппаратные средства
персонального компьютера
Технические характеристики ПК
Компьютерные сети
уровень передачи данных
Техника живописи
Об искусстве и художниках
Трещины в слоях масляной живописи
Различные методы в масляной живописи
Лессировки
Смолы средней твердости
Лаки для живописи
Матовые масляные краски
Материалы для грунта и их грунтовка
Клеевой грунт
Палитры
Поступательный ход развития
техники живописи
Подготовка стен для живописи
Масла
Краски древности
Метод живописи, которым пользовались
живописцы Фландрии
Оптическое смешение красок
Техника живописи Леонардо да Винчи
Техника живописи Рибейры,
Веласкеза, Муриль

Строительные материалы

 

Законы идеальных газов

Закон Дальтона

Пример. Найти молярную массу М смеси кислорода массой m1=25 г и азота массой m2=75 г.

Пример . В баллоне объемом V= 10 л находится гелий под давлением 1=l МПа при температуре T1=300 К. После того как из баллона был израсходован гелий массой m=10 г, температура в баллоне понизилась до T2=290 К. Определить давление 2 гелия, оставшегося в баллоне.

Молекулярное строение вещества Определить относительную молекулярную массу Mr: 1) воды; 2) углекислого газа СО2; 3) поваренной соли NaCl.

Уравнение газового состояния Какой объем V занимает идеальный газ, содержащий количество вещества v=l кмоль при давлении p=1 МПа и температуре T=400 К?

Молекулярно-кинетическая теория газов Основные формулы Доска объявлений о животных Поклейка обоев, декоративные покрытия

В баллоне вместимостью V=6,9 л находится азот массой m=2,3 г. При нагревании часть молекул диссоциировали на атомы. Коэффициент диссоциации* a=0,2. Определить: 1) общее число N1 молекул и концентрацию n1 молекул азота до нагревания; 2) концентрацию n2 молекул и n3 атомов азота после нагревания.

Лекции и конспекты Переменный ток Решение задач по физике

Диффузия. Диффузией называется явление самопроизвольного взаимного проникновения и перемешивания частиц соприкасающихся газов, жидкостей и даже твердых тел при наличии неоднородности распределения частиц разного сорта. В смесях диффузия вызывается наличием разных концентраций молекул компонентов смеси в разных частях объема

Пример. В колбе вместимостью V=0,5 л находится кислород при нормальных условиях. Определить среднюю энергию  поступательного движения всех молекул, содержащихся в колбе.

Пример. Найти среднюю кинетическую энергию одной молекулы аммиака NH3 при температуре t=27 °С и среднюю энергию вращательного движения этой молекулы при той же температуре.

Основное уравнение кинетической теории газов. Энергия молекул

Элементы статистической физики Распределение Больцмана (распределение частиц в силовом поле)

Распределение молекул по импульсам. Число молекул, импульсы которых заключены в пределах от р до p+dp,

Теплопроводность (коэффициент теплопроводности) газа

Закон Фика Пример. В сосуде содержится газ, количество вещества v которого равно 1,2 моль. Рассматривая этот газ как идеальный, определить число DN молекул, скорости J которых меньше 0,001 наиболее вероятной скорости Jв.

Решение. Для решения задачи удобно воспользоваться распределением молекул по относительным скоростям u (u=J/Jв). Число dN(u) молекул, относительные скорости и, которых заключены в пределах от u до du, определяется формулой

,  (1) где N — полное число молекул.

Пример. Средняя длина свободного пробега <l> молекулы углекислого газа при нормальных условиях равна 40 нм. Определить среднюю арифметическую скорость <J> молекул и число z соударений, которые испытывает молекула в 1 с.

Пример . Барометр в кабине летящего самолета все время показывает одинаковое давление p=79 кПа, благодаря чему летчик считает высоту h полета неизменной. Однако температура воздуха за бортом самолета изменилась с t=5°С до t=1°C. Какую ошибку Dh в определении высоты допустил летчик? Давление р0 у поверхности Земли считать нормальным.

Распределение Больцмана Пылинки, взвешенные в воздухе, имеют массу m=10-18 г. Во сколько раз уменьшится их концентрация п при увеличении высоты на Dh =10 м? Температура воздуха Т=300 К.

Распределение молекул по скоростям и импульсам Какова вероятность W того, что данная молекула идеального газа имеет скорость, отличную от ½Jв не более чем на 1 %?

Распределение молекул по кинетическим энергиям Найти выражение средней кинетической энергии <eв> поступательного движения молекул. Функцию распределения молекул по энергиям считать известной.

Длина свободного пробега и число столкновений молекул

Определить зависимость диффузии D от температуры Т при следующих процессах: 1) изобарном; 2) изохорном.

Физические основы термодинамики

Первое начало термодинамики в общем случае записывается в виде Q=DU+A, где Q – количество теплоты, сообщённое газу; DU—изменение его внутренней энергии; А — работа, совершаемая газом против внешних сил.

Пример. Вычислить удельные теплоемкости неона и водорода при постоянных объеме (сv) и давлении (cp), принимая эти газы за идеальные.

Пример. Определить количество теплоты, поглощаемой водородом массой m=0,2 кг при нагревании его от температуры t1=0°С до температуры t2=100 °С при постоянном давлении. Найти также изменение внутренней энергии газа и совершаемую им работу.

Пример. Кислород занимает объем V1=1 м3 и находится под давлением р1=200 кПа. Газ нагрели сначала при постоянном давлении до объема V2=3 м2, a затем при постоянном объеме до давления Рис 11.1 р2=500 кПа. Построить график процесса и найти: 1) изменение DU внутренней энергии газа; 2) совершенную им работу A; 3) количество теплоты Q, переданное газу.

Пример. Идеальный двухатомный газ, содержащий количество вещества v=l моль, находится под давлением p1=250кПа и занимает объем V1==10 л. Сначала газ изохорно нагревают до температуры T2=400 К. Далее, изотермически расширяя, доводят его до первоначального давления. После этого путем изобарного сжатия возвращают газ в начальное состояние. Определить термический КПД h цикла.

Пример. В цилиндре под поршнем находится водород массой m=0,02 кг при температуре T1=300K. Водород начал расширяться адиабатно, увеличив свой объем в пять раз, а затем был сжат изотермически, причем объем газа уменьшился в пять раз. Найти температуру Т2, в конце адиабатного расширения и работу А, совершенную газом. Изобразить процесс графически.

Пример. Нагреватель тепловой машины, работающей по обратимому циклу Карно, имеет температуру t1==200°С. Определить температуру Т2, охладителя, если при получении от нагревателя количества теплоты Q1= 1 Дж машина совершает работу A=0,4 Дж? Потери на трение и теплоотдачу не учитывать.

Решение. Так как процесс изотермический, то в общем выражении энтропии   температуру выносят за знак интеграла. Выполнив это, получим   (1)

Количество теплоты Q, полученное газом, найдем по первому началу термодинамики: Q=DU+A. Для изотермического процесса DU=0, следовательно,

Работа расширения газа

При изотермическом расширении кислорода, содержавшего количество вещества ν=l моль и имевшего температуру Т=300 К, газу было передано количество теплоты Q=2 кДж. Во сколько раз увеличился объем газа?

Какое количество теплоты Q выделится, если азот массой т=1 г, взятый при температуре T=280 К под давлением p1=0,1 МПа, изотермически сжать до давления p2=l МПа?

Круговые процессы. Термический КПД. Цикл Карно

Энтропия Смешали воду массой m1=5 кг при температуре T1=280 К с водой массой m2=8 кг при температуре Т2=350 К. Найти: 1) температуру θ смеси; 2) изменение ΔS энтропии, происходящее при смешивании

Внутренняя энергия реального газа Поверхностное натяжение

Формула Пуазейля. Объем жидкости (газа), протекающей за время t через длинную трубку, где r — радиус трубки; l – ее длина; Δp – разность давлений на концах трубки; η – динамическая вязкость (коэффициент внутреннего трения) жидкости.

Пример. В баллоне вместимостью V=8 л находится кислород массой m=0,3 кг при температуре T=300 К. Найти, какую часть вместимости сосуда составляет собственный объем молекул газа.

Пример. Углекислый газ, содержащий количество вещества v=l моль находится в критическом состоянии. При изобарном нагревании газа его объем V увеличился в k=2 раза. Определить изменение DТ температуры газа, если его критическая температура Ткр=304 К. Решение. Для решения задачи удобно воспользоваться уравнением Ван-дер-Ваальса в приведенной форме, т. е. в такой форме, когда давление р, молярный объем Vm и температура T реального газа с соответствующими критическими параметрами представлены в виде следующих отношений: .

Из этих равенств получим: .

Пример. Найти добавочное давление р внутри мыльного пузыря диаметром d=10 см. Определить также работу А, которую нужно совершить, чтобы выдуть этот пузырь.

Решение. Пленка мыльного пузыря имеет две сферические поверхности — внешнюю и внутреннюю. Обе поверхности оказывают давление на воздух, заключенный внутри пузыря. Так как толщина пленки чрезвычайно мала, то диаметры обеих поверхностей практически одинаковы. Поэтому добавочное давление р=2×2s/r, где r — радиус пузыря. Так как r=d/2, то p=8s/d.

Пример. Вода подается в фонтан из большого цилиндрического бака (рис. 12.2) и бьет из отверстия II—II со скоростью v2=12 м/с. Диаметр D бака равен 2 м, диаметр d сечения II—II равен 2 см. Найти: 1) скорость v1 понижения воды в баке; 2) давление p1, под которым вода подается в фонтан; 3) высоту h1 уровня воды в баке и высоту h2 струи, выходящей из фонтана.

Пример. В сосуде с глицерином падает свинцовый шарик. Определить максимальное значение диаметра шарика, при котором движение слоев глицерина, вызванное падением шарика, является еще ламинарным. Движение считать установившимся. Решение. Если в вязкой жидкости движется тело, то вместе с ним, как одно целое, движется и прилипший к телу слой жидкости. Этот слой вследствие внутреннего трения увлекает за собой и соседние слои. Возникающее при этом движение жидкости является ламинарным или турбулентным в зависимости .от размеров в формы тела и его скорости. Характер движения зависит также от свойств жидкости и определяется безразмерным числом Рейнольдса.

Уравнение Ван-дер-Ваальса В сосуде вместимостью V=10 л находится азот массой m=0,25 кг. Определить: 1) внутреннее давление р' газа: 2) собственный объем V¢ молекул.

Определить давление р, которое будет производить кислород, содержащий количество вещества n=l моль, если он занимает объём V=0,5 л при температуре T=300 К. Сравнить полученный результат с давлением, вычисленным по уравнению Менделеева — Клапейрона.

Внутренняя энергия Определить внутреннюю энергию U азота, содержащего количество вещества n=l моль, при критической температуре Ткр=126 К. Вычисления выполнить для четырех значений объемов V:1) 20л;2) 2л,3) 0,2л;4)Vкр.

Гидродинамика В широкой части горизонтально расположенной трубы нефть течет со скоростью v1=2 м/с. Определить скорость v2 нефти в узкой части трубы, если разность Dр давлений в широкой и узкой частях ее равна 6,65 кПа.

Электростатика Закон Кулона. Взаимодействие заряженных частиц

На участке I на заряд Q1 действуют две противоположно направленные силы: F1 и F2. Сила F1, действующая со стороны заряда 9Q, в любой точке этого участка будет больше, чем сила F2, действующая со стороны заряда -Q, так как больший (по модулю) заряд 9Q всегда находится ближе к заряду Q1, чем меньший заряд -Q. Поэтому равновесие на этом участке невозможно

Решение. Закон Кулона позволяет вычислить силу взаимодействия точечных зарядов. По условию задачи, один из зарядов не является точечным, а представляет собой заряд, равномерно распределенный по длине стержня. Однако если выделить на стержне дифференциально малый участок длиной dl, то находящийся на нем заряд dQ=tdl можно рассматривать как точечный и тогда по закону Кулона сила взаимодействия между зарядами Q1 и dQ:

Два одинаковых заряженных шарика подвешены в одной точке на нитях одинаковой длины. При этом нити разошлись на угол a. Шарики погружаются в масло плотностью p0=8×102 кг/м3. Определить диэлектрическую проницаемость e масла, если угол расхождения нитей при погружении шариков в масло остается неизменным. Плотность материала шариков р=1,6×103 кг/м3.

Взаимодействие точечного заряда с зарядом, равномерно распределенным Тонкий стержень длиной l=10 см равномерно заряжен. Линейная плотность t заряда равна 1 мкКл/м. На продолжении оси стержня на расстоянии а=20 см от ближайшего его конца находится точечный заряд Q=100 нКл. Определить силу F взаимодействия заряженного стержня и точечного заряда.

Напряженность электрического поля.

Принцип суперпозиции (наложения) электрических полей, согласно которому напряженность Е результирующего поля, созданного двумя (и более) точечными зарядами, равна векторной (геометрической) сумме напряженностей складываемых полей:

Поток вектора электрического смещения выражается аналогично потоку вектора напряженности электрического поля:

Решение. Согласно принципу суперпозиции электрических полей, каждый заряд создает поле независимо от присутствия в пространстве других зарядов. Поэтому напряженность Е электрического поля в искомой точке может быть найдена как векторная сумма напряженностей E1 и Е2 полей, создаваемых каждым зарядом в отдельности: E=E1+E2. Напряженности электрического поля, создаваемого в вакууме первым и вторым зарядами, соответственно равны   (1)

Плоскости делят все пространство на три области: I, II и III. Как вид но из рисунка, в первой и третьей областях электрические силовые линии обоих полей направлены в одну сторону и, следовательно, напряженности суммарных полей Е(I) и E(III) в первой и третьей областях равны между собой и равны сумме напряженностей полей, создаваемых первой и второй плоскостями: Е(I)= E(III)=E1+E2, или Е(I)= E(III)=.

Согласно принципу суперпозиции электрических полей, напряженность поля в точке, где находится заряд Q, равна векторной сумме напряженностей E1 и Е2 : E=E1+E2. Так как векторы E1 и Е2 взаимно перпендикулярны, то .

Так как R и r входят в формулу в виде отношения, то они могут быть выражены в любых, но только одинаковых единицах.

Пример Две концентрические проводящие сферы радиусами R1=6 см и R2=10 см несут соответственно заряды Q1=l нКл и Q2= –0,5 нКл. Найти напряженность Е поля в точках, отстоящих от центра сфер на расстояниях r1=5 см, r2=9 см r3=15см. Построить график Е(r). Решение. Заметим, что точки, в которых требуется найти напряженности электрического поля, лежат в трех областях : область I (r<R1), область II (R1<r2<R2), область III (r3>R2).

Напряженность поля точечных зарядов Определить напряженность Е электрического поля, создаваемого точечным зарядом Q=10 нКл на расстоянии r=10 см от него.

Напряженность поля заряженной линии Очень длинная тонкая прямая проволока несет заряд, равномерно распределенный по всей ее длине. Вычислить линейную плотность t заряда, если напряженность E поля на расстоянии а=0,5 м от проволоки против ее середины равна 200 В/м.

Напряженность поля заряда, распределенного по объему Эбонитовый сплошной шар радиусом R=5 см несет заряд, равномерно распределенный с объемной плотностью p=10 нКл/м3. Определить напряженность Е и смещение D электрического поля в точках: 1) на расстоянии r1=3 см от центра сферы; 2) на поверхности сферы; 3) на расстоянии r2=10 см от центра сферы. Построить графики зависимостей Е(r) и D(r).

Сила, действующая на заряд в электрическом поле Тонкая нить несет равномерно распределенный по длине заряд с линейной плотностью t=2 мкКл/м. Вблизи средней части нити на расстоянии r=1 см, малом по сравнению с ее длиной, находится точечный заряд Q=0,1 мкКл. Определить силу F, действующую на заряд.

Потенциал. Энергия и системы электрических зарядов. Работа по перемещению заряда в поле.

Потенциал электрического поля есть величина, равная отношению потенциальной энергии точечного положительного заряда, помещенную в данную точку поля, к этому заряду; j=П/Q, или потенциал электрического поля есть величина, равная отношению работы сил поля по перемещению точечного положительного заряда из данной точки поля в бесконечность к этому заряду: j=A/Q.

Энергия W взаимодействия системы точечных зарядов Q1, Q2, ..., Qn определяется работой, которую эта система зарядов может совершить при удалении их относительно друг друга в бесконечность, и выражается формулой,

где ji — потенциал поля, создаваемого всеми п–1 зарядами (за исключением 1-го) в точке, где расположен заряд Qi.

Потенциал связан с напряженностью электрического поля соотношением Е= –gradj.

Решен и е. Положим, что первый заряд Q1 остается неподвижным, а второй Q2 под действием внешних сил перемещается в поле, созданном зарядом Q1, приближаясь к нему с расстояния r1=t,5 м до r2=1 м.

Работа А' внешней силы по перемещению заряда Q из одной точки поля с потенциалом j1 в другую, потенциал которой j2, равна по модулю и противоположна по знаку работе А сил поля по перемещению заряда между теми же точками: А'= —А.

Работа А сил поля по перемещению заряда A=Q(j1—j2). Тогда работа А' внешних сил может быть записана в виде A'= –Q(j1—j2)=Q(j2—j1). (1)

Потенциалы точек начала и конца пути выразятся формулами ; .

Для определения потенциалов в точках 1 и 2 проведем через эти точки эквипотенциальные поверхности I и II. Эти поверхности будут плоскостями, так как поле между двумя равномерно заряженными бесконечными параллельными плоскостями однородно. Для такого поля справедливо соотношение j1—j2=El, (2) где Е — напряженность поля; l — расстояние между эквипотенциальными поверхностями.

Напряженность поля между параллельными бесконечными разноименно заряженными плоскостями E=s/e0. Подставив это выражение Е в формулу (2) и затем выражение j1—j2 в формулу (1), получим A=Q(s/e0)l.

Пример. По тонкой нити, изогнутой по дуге окружности радиусом R, равномерно распределен заряд с линейной плотностью t=10 нКл/м. Определить напряженность Е и потенциал j электрического поля, создаваемого таким распределенным зарядом в точке О, совпадающей с центром кривизны дуги. Длина l нити составляет 1/3 длины окружности и равна 15 см. Решение. Выберем оси координат так, чтобы начало координат совпадало с центром кривизны дуги, а ось у была симметрично расположена относительно концов дуги (рис. 15.2). На нити выделим элемент длины dl. Заряд dQ=tdl, находящийся на выделенном участке, можно считать точечным.

Пример. Электрическое поле создана длинным цилиндром радиусом R=1 см, равномерно заряженным с линейной плотностью t=20 нКл/м. Определить разность потенциалов двух точек этого поля, находящихся на расстояниях a1=0,5 см и а2=2 см от поверхности цилиндра, в средней его части. Решение. Для определения разности потенциалов воспользуемся соотношением между напряженностью поля и изменением потенциала Е= —gradj. Для поля с осевой симметрией, каким является поле цилиндра, это соотношение можно записать в виде Е= –(dj/dr), или dj= —Еdr.

Решение. Заряд, находящийся на стержне, нельзя считать точечным, поэтому непосредственно применить для вычисления потенциала формулу , (1) справедливую только для точечных зарядов, нельзя. Но если разбить стержень на элементарные отрезки dl, то заряд tdl, находящийся на каждом из них, можно рассматривать как точечный и тогда формула (1) будет справедлива. Применив эту формулу, получим ,  (2) где r — расстояние точки, в которой определяется потенциал, до элемента стержня. Из рис. 15.3 следует, что dl=(rda/cosa). Подставив это выражение dl в формулу (2), найдем.

Пример. Электрон со скоростью v=1,83×106 м/с влетел в однородное электрическое поле в направлении, противоположном вектору напряженности поля. Какую разность потенциалов U должен пройти электрон, чтобы обладать энергией Ei=13,6 эВ*? (Обладая такой энергией, электрон при столкновении с атомом водорода может ионизировать его. Энергия 13,6 эВ называется энергией ионизации водорода.)

Решение. Электрон должен пройти такую разность потенциалов U, чтобы приобретенная при этом энергия W в сумме с кинетической энергией T, которой обладал электрон перед вхождением в поле, составила энергию, равную энергии ионизации Ei, т. е. W+T=Ei. Выразив в этой формуле W=eU и Т =(mv2/2), получим eU+(mv2/2)=Ei. Отсюда.

Электрон-вольт (эВ) — энергия, которую приобретает частица, имеющая заряд, равный заряду электрона, прошедшая разность потенциалов 1 В. Эта внесистемная единица энергии в настоящее время допущена к применению в физике.

Пример. Электрон без начальной скорости прошел разность потенциалов U0=10 кВ и влетел в пространство между пластинами плоского конденсатора, заряженного до разности потенциалов Ul=100 В, по линии АВ, параллельной пластинам (рис. 15.4). Расстояние d между пластинами равно 2 см. Длина l1 пластин конденсатора в направлении полета электрона, равна 20 cм. Определить расстояние ВС на экране Р, отстоящем от конденсатора на l2=1 м.

Потенциальная энергия и потенциал поля точечных зарядов Точечный заряд Q = 10 нКл, находясь в некоторой точке поля, обладает потенциальной энергией П = 10 мкДж. Найти потенциал φ этой точки поля.

Тонкие стержни образуют квадрат со стороной длиной а. Стержни заряжены с линейной плотностью τ= 1,33 нКл/м. Найти потенциал φ в центре квадрата.

Градиент потенциала и его связь с напряженностью поля Бесконечная плоскость равномерно заряжена с поверхностной плотностью σ=4 нКл/м2. Определить значение и направление градиента потенциала электрического поля, созданного этой плоскостью.

Движение заряженных частиц в электрическом поле Электрон находится в однородном электрическом поле напряженностью Е=200 кВ/м. Какой путь пройдет электрон за время t= 1 нс, если его начальная скорость была равна нулю? Какой скоростью будет обладать электрон в конце этого интервала времени?

Свойства диэлектриков

Механический момент, действующий на диполь с электрическим моментом р, помещенный в однородное электрическое поле с напряженностью Е, M=[pE], или M=pE sin α, где α - угол между направлениями векторов р и Е.

Уравнение Клаузиуса - Мосотти

В первом случае диполь будет повертываться под действием сил поля. Следовательно, работа внешних сил при этом отрицательна. Во втором случае поворот может быть произведен только под действием внешних сил, и, следовательно, работа внешних сил при этом положительна. Работу, совершаемую при повороте диполя, можно вычислять двумя способами: 1) непосредственно интегрированием выражения элементарной работы; 2) с помощью соотношения между работой и изменением потенциальной энергии диполя в электрическом поле.

Пример. Три точечных заряда Ql Q2 и Q3 образуют электрически нейтральную систему, причем Ql=Q2= 10 нКл. Заряды расположены в вершинах равностороннего треугольника. Определить максимальные значения напряженности Еmах и потенциала φmах поля, создаваемого этой системой зарядов, на расстоянии r= 1 м от центра треугольника, длина а стороны которого равна 10 см.

Пример. В атоме йода, находящемся на расстоянии r=1 нм от альфа-частицы, индуцирован электрический момент р= 1,5*10-32 Кл·м. Определить поляризуемость α атома йода.

Пример. Жидкий бензол имеет плотность ρ=899 кг/м3 и показатель преломления п= 1,50. Определить: 1) электронную поляризуемость αе молекул бензола; 2) диэлектрическую проницаемость ε паров бензола при нормальных условиях.

В полученное выражение входит молярная масса М бензола. Найдем ее. Так как химическая формула бензола C6H6, то относительная молекулярная масса Мr=6·12+6·1=78. Следовательно, молярная масса M=78·10-3 кг/моль.

Напряженность и потенциал поля диполя. Электрический момент диполя

Поляризация диэлектриков Показать, какими типами поляризации (электронной - е, атомной - а, ориентационной - о) обладают следующие атомы н молекулы: 1) Н; 2) Не; 3) О2; 4) НCl; 5) H2O; 6) СО; 7) СО2; 8) СН3; 9) CCl4.

Электрическое поле в диэлектрике Пространство между пластинами плоского конденсатора заполнено диэлектриком, молекулы которого можно рассматривать как жесткие диполи с электрическим моментом μМ=2·10-30 Кл·м.

Электронная и атомная поляризации Связь поляризуемости α с диэлектрической восприимчивостью c для неполярных жидкостей и кристаллов кубической сингонии задается выражением c/(c+3)=αn/3, где п - концентрация молекул. При каком наибольшем значении c погрешность в вычислении α не будет превышать 1 % , если воспользоваться приближенной формулой c≈αп?

Показатель преломления n газообразного кислорода при нормальных условиях равен 1,000272. Определить электронную поляризуемость αе молекулы кислорода.

Электрическая емкость. Конденсаторы.

Электрическая емкость параллельно соединенных конденсаторов: в общем случае C=C1+C2+...+Cn; в случае двух конденсаторов C=C1+C2;

Пример. Два плоских конденсатора одинаковой электроемкости С1=С2=С соединены в батарею последовательно и подключены источнику тока с электродвижущей силой ε. Как изменится разность потенциалов U1 на пластинах первого конденсатора, если пространство между пластинами второго конденсатора, не отключая источника тока, заполнить диэлектриком с диэлектрической проницаемостью ε =7?

Электрическая емкость проводящей сферы Электрическая емкость сферического конденсатора

Две концентрические металлические сферы радиусами Rl=2 см и R2=2,1 см образуют сферический конденсатор. Определить его электроемкость С, если пространство между сферами заполнено парафином.

Энергия заряженного проводника. Энергия электрического поля.

Пример. Плоский воздушный конденсатор с площадью S пластины, равной 500 см2, подключен к источнику тока, ЭДС которого равна 300 В. Определить работу А внешних сил по раздвижению пластин от расстояния d1 = 1 см до d2=3 см в двух случаях: 1) пластины перед раздвижением отключаются от источника тока; 2) пластины в процессе раздвижения остаются подключенными к нему.

Энергия поля конденсатора определяется по формуле W=CU2/2, (2) где U - разность потенциалов, до которой заряжены пластины конденсатора; С - его электроемкость. Но C=εε0S/d, V=Sd. Подставив выражение С в формулу (2) и затем выражения W и V в формулу (1), получим ω=εε0U2/ (2d2).

Энергия плоского конденсатора

Доска объявлений о животных Поклейка обоев, декоративные покрытия Математический анализ Интегральное исчисление