Методы интегрирования


Математика курсовая задачи с решениями

Теория непрерывных функций и основные теоремы о функциях, непрерывных в точке и на множестве, определение точек разрыва функции и их классификация

Теорема: (необходимый признак сходимости ряда).

Если ряд

сходится, то .

Доказательство: Пусть данный ряд имеет сумму S.

,

Так как ряд сходится, то и , тогда , что и требовалось доказать.

Следствие: (Достаточный признак расходимости числового ряда.)

Если у числового ряда , то ряд расходится.

Действительно, если бы ряд сходился, то по теореме (4) .

Замечание: Условие является необходимым, но не достаточным для сходимости ряда. Это означает, что существуют расходящиеся ряды, у которых . В качестве примера рассмотрим ряд .

Очевидно . Рассмотрим . Так как то

Следовательно , то есть , что означает расходимость рассматриваемого ряда.

Вычисление предела иррациональной функции Общих правил вычисления предела иррациональной функции нет. Способ вычисления зависит от вида функции. Поэтому рассмотрим применяемые методы на конкретных примерах
Дифференциальные уравнения