Методы интегрирования


Математика курсовая задачи с решениями

Спираль Архимеда, описываемая точкой, двигающейся по вращающемуся кругу, стояла особняком среди многочисленных кривых, известных его современникам.

Свойства степенных рядов

Отметим здесь, без доказательства, три важных свойства степенных рядов.

1.Сумма степенного ряда

(2)

является непрерывной функцией в каждой точке интервала сходимости .

2.Ряд

,

(4)

полученный почленным дифференцированием ряда (2), является степенным рядом с тем же, что и ряд (2), интервалом сходимости . Сумма ряда (4) .

Замечание. Ряд (4) также можно почленно дифференцировать и сумма полученного после этого ряда равна , и так далее. Таким образом, сумма ряда (2) является бесконечно дифференцируемой функцией в интервале сходимости . Сумма ряда полученного из ряда (2) – кратным дифференцированием, равна . Область сходимости степенного ряда при дифференцировании не изменится.

3. Пусть числа и принадлежат интервалу сходимости ряда (2). Тогда имеет место равенство

(5)

Исследовать функцию на непрерывность в ее естественной области определения, указать точки разрыва и их характер
Дифференциальные уравнения