Методы интегрирования


Математика курсовая задачи с решениями

Теория непрерывных функций и основные теоремы о функциях, непрерывных в точке и на множестве, определение точек разрыва функции и их классификация

Простейшие свойства числовых рядов

Теорема 1: Если ряд

(1)

сходится и имеет сумму S, то ряд

(2)

где λ–произвольное число, также сходится и имеет сумму λ·S

Доказательство: Пусть и –n–е частичные суммы рядов (1) и (2) соответственно.

Тогда и , следовательно, ряд (2) сходится и имеет сумму

Теорема 2: Если ряды

(1)

(3)

сходятся и имеют суммы S и соответственно, то ряды

(4)

называемые суммой и разностью соответственно рядов (1) и (3), также сходятся и имеют суммы соответственно.

Доказательство: Пусть , и – n–е частичные суммы рядов (1), (3) и (4) соответственно. Тогда

,

что доказывает теорему.

Вычисление предела иррациональной функции Общих правил вычисления предела иррациональной функции нет. Способ вычисления зависит от вида функции. Поэтому рассмотрим применяемые методы на конкретных примерах
Дифференциальные уравнения