Методы интегрирования


Математика контрольная курсовая Примеры решений

Две функции называются равносильными, если они принимают одинаковые значения на любом наборе значений входящих в эти функции переменных, т. е. у этих функций одинаковые таблицы истинности.

Дифференциальные уравнения второго порядка

Дифференциальное уравнение второго порядка можно записать в виде . Мы будем рассматривать уравнения второго порядка, которые можно разрешить относительно производной второго порядка, то есть записать в виде

.

Для этих уравнений имеет место теорема существования и единственности решения.

Теорема. Если в уравнении функция и ее частные производные по аргументам y и непрерывны в некоторой области, содержащей , то существует и притом единственное решение уравнения, удовлетворяющее условиям и .

Эти условия называются начальными условиями. Геометрический смысл этих условий состоит в том, что через заданную точку плоскости с заданным тангенсом угла наклона касательной проходит единственная интегральная кривая. Ясно, что если мы будем задавать различные значения , то при постоянных и мы получим бесчисленное множество интегральных кривых с различными углами наклона касательных и проходящих через заданную точку.

Общим решением дифференциального уравнения второго порядка называется функция , зависящая от двух произвольных постоянных, которая при любых значениях и является решением дифференциального уравнения.

Уравнение , определяющее общее решение, называется общим интегралом дифференциального уравнения.

Если в общее решение подставить конкретные значения и , то получится частное решение дифференциального уравнения. График частного решения называют интегральной кривой данного дифференциального уравнения.

Рассмотрим методы решения некоторых уравнений второго порядка.

Значение функции можно задать с помощью таблицы истинности, которая показывает, чему равна функция на всех возможных комбинациях значений ее переменных
Купить пальто утепленное женское подробности на сайте.
Дифференциальные уравнения